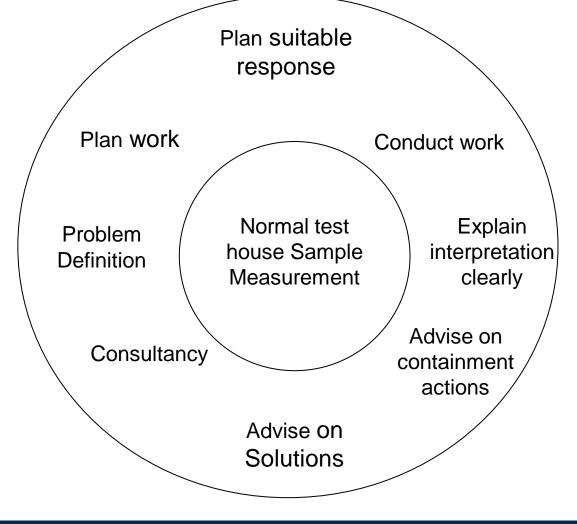


Technical Industrial Problem Solving and Failure Investigation at LPD Lab Services

Dr Stephen Jenkins – Managing Director / Principal Scientist MEDIPLAS 2013 (NEC) - 26th September RAPRA Session Invited Speaker

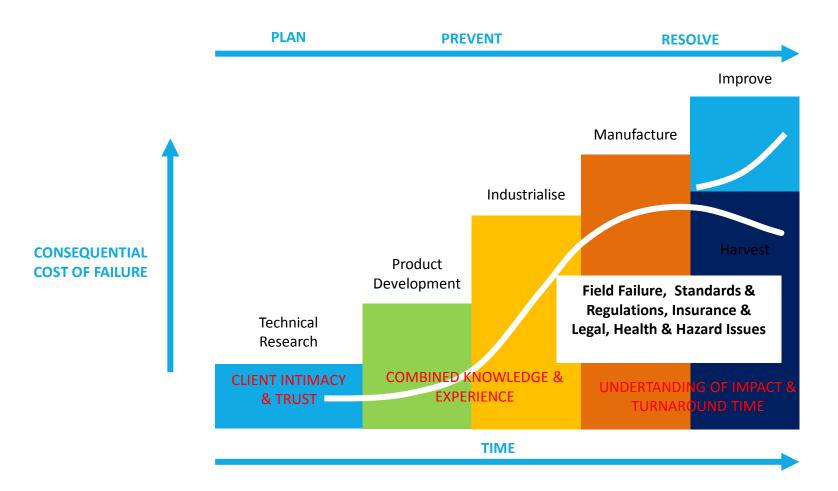
Philips Road Blackburn Lancashire BB1 5RZ UK Tel: +44 (0)1254 676074 Fax: +44 (0)1254 278845 www.lpdlabservices.co.uk

Who are LPD Lab Services?



- Mix of analytical industrial chemists, materials scientists / engineers, physicists (Over 180 man-years experience 8 technical staff)
- Access to Consultants and Trusted Partner Laboratories
- Diverse product and process manufacturing knowledge.
- Experienced and pragmatic problem solvers backed by 6 Sigma expertise.
- Used to providing quick and effective solutions to deal with unusual problems
- Diverse laboratory equipment right tools for job!
- Skilled in bespoke sample preparation without interfering with physical and chemical structures.
- Flexible / proactive approach to scope of work.

Problem Solving Approach – Beyond a Test House



Problem Solving Methodology:-

- 6 Sigma
- 8D
- Kepner Tregoe (KT)

Support Service Life Cycle

Introduction to Specialities of LPD Lab Services

Specialties:-

- Physical Analysis
- Chemicals Analysis.
- Materials analysis and materials engineering
- Surface analysis
- Bespoke tests and measurements
- Problem Solving
- Consultancy
- Reverse Engineering / Deformulation
- Product and process development.

Key Factors –

Competent, Experienced, Fast, Adaptable and communicative

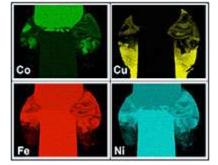
Turn complex data into understandable practical information. Accreditations –

ISO 17025:2005 (laboratory)

Materials Analysis

Why?

- Generate improved performance and quality of products
- Cost reduction
- Identify, track and remove contaminants


Involves:-

- •Materials Analysis and Failure Investigation
- •Physical, Structural and Microstructure Analysis
- •Chemical Analysis.

Materials analysis instrumentation:-. •Optical Microscopy, SEM/EDX, FTIR, XPS, SIMS, XRF, AAS

Cost and Time efficiency:-

Failure analysis allows skillful dismantling products and components to solve problems - Determine material and product shortcomings.
 Reverse engineering benchmarking of competitors products to reveal the production methods and materials - Drive product development.

Physical, Structural and Microstructural Analysis

Physical properties, mechanical properties, structure and microstructure of:-

- Chemicals
 Materials
- Assembled products.

Including:

- Top down inspection Optical Microscopy and SEM
- Cross-sectional analysis Optical Microscopy and SEM
- Image analysis
- Chemical compatibility and wetting (contact angles) DCAT/OCAT
- Mechanical Tests and Hardness
- Viscosity
- Particle size, size distribution and shape.

Chemical Analysis

Gases, Liquid or Solids

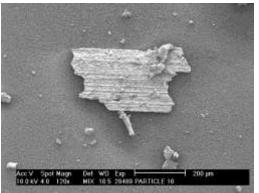
Bespoke Method Development or Routine analysis

Wide array of analytical techniques: FTIR, XRF, AAS, ICP-MS, GC, HPLC, IC, UV/Vis, Karl Fischer, Titration, Back extraction

Practical Context-orientated interpretation

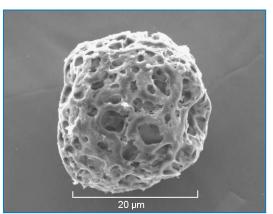
Example work:-

- Product / process control and validation
- Identification and elimination of contaminants
- Chemical Product Deformulation and Reformulation
- •Adhesives, coatings, adhesion promoters and coupling agents
- Analysis of binders and fillers
- Determination of plastic / polymer types
- Identification of unknown chemicals and detergents
- Trace metal analysis



Particle Contamination Identification and Elimination

- Particle contamination is problematic for many industries.
- Isolating and characterising the particles (with Optical Microscopy, SEM / EDX, FTIR and SIMS) can yield a likely source.


Perform this work on virtually any type of sample, including:

- Liquid samples suspended particles (pharmaceuticals).
- Filters / Membranes (eg inhaled products).
- Product surfaces and under transparent polymer layers eg catheters, other medical devices.

Metal oxide particle with characteristic machine marks

Charred pollen grain found to block a filter.

Materials Problems with Plastics and Coatings?

Plastic Moulding Cracking Over Life

Moulding conditions can leave residual stress Relieved over life giving cracking (Environmental Stress Cracking - ESC)

- Solvent or cleaning agents give polymer chains mobility Cracks.
- Cracks trap bacterial and hard to clean.
- Affected by filler contents, filler types, size shape and distributions
- Polymer crystallinity.

Shrinkage

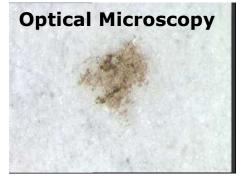
- Mobile species like plasticisers or low molecular weight polymer can leach out under heat.
- Change mechanical properties.
- Cause delamination.

Materials Problems with Plastics and Coatings?

Delamination

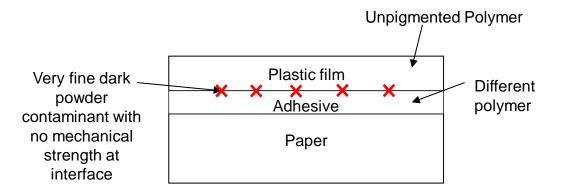
- Incomplete Curing
- Weak boundary layers

Depolymerisation / Degradation


- Stabiliser concentration problems Material less robust.
- Hydrolysis.
- Oxidation.
- Free radical attack.
- Attack by mobile metallic ions.
- Chlorine embrittllement in Polyacetal.

Buried Particles in Wound Dressing Laminate

Particle identification, isolation, characterisation and type matching in medical laminate.


• Dismantle laminate under microscope

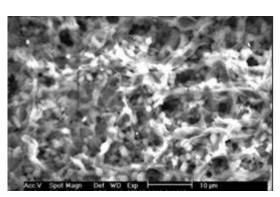
OR

• Solvent removal of over-layers without disturbing physical and chemical structure so causal link can be proved

150µm diameter particle

SEM/EDX showed particles in raw and finished laminate materials chemically and physically similar (iron oxide + other elements) to confirm supplier was source.

Identification of Sources of Particles in Products


Example particles found in products:-

Wear Particles

- Broken Fluorinated rubber with embedded stainless steel from mixer seal Wear material.
- Fine structure and density points to source.

- Typical nodular structure, density and chemistry (FTIR & SEM/EDX) of algae.
- Low Magnification images showed flat sides indicated dislodged from sidewalls of pipe or process tank.

SEM EDX Spectra

1.08

7.88

3.80

4.98

5.88

6.88

7.95

2.99

Algae SEM Image

Materials for Wound Management & Infection Control

- Physical and Chemical Interactions between Silver Alginate wound dressing materials.
- SEM to look at fibre types and different fibre fractions / distributions
- XPS to investigate residual surface treatments from processing slip agents or treatments to affect antibacterial activity.
- Process control checking CHDG (Chlorohexadine Digluconate) in antiseptic wipes.
- Development of staining systems to visualise active ingredient distribution like CHDG in fabrics (wipes and dressings) in cross-sections.

Summary and Final Comments

Effective Problem Solving Needs...

- Experienced analytical staff to recognise failure mechanisms.
- Combine interpretation from multiple techniques.
- Act as extra R&D manpower / consultants for customer.
- Actively input into product and process modifications.
- Add value input when analysts have close understanding of the product and design requirements.
- Adaptable and react fast.

Any Questions?

LPD Lab Services Ltd

www.lpdlabservices.co.uk enquiries@lpdlabservices.co.uk Tel. 01254-676074